Complex numbers and multi-valued functions
1. State the Euler’s formula (which connect exponential functions with trigonometric functions). Express \cos3\theta in terms of \cos\theta and \sin\theta.
- Euler's formula: e^{i\theta}=\cos\theta+i\sin\theta, \theta\in\R.
\cos 3\theta=\operatorname{Re}e^{3i\theta}=\operatorname{Re}(e^{i\theta})^3=\operatorname{Re}(\cos\theta+i\sin\theta)^3=\operatorname{Re}(\cos^3\theta+3i\cos^2\theta\sin\theta-3\cos\theta\sin^2\theta-i\sin^3\theta)=\cos^3\theta-3\cos\theta\sin^2\theta.
2. Find all values of (-2+2i)^\frac{1}{3} (hint: you should use the polar representation.
- Consider -2+2i=2\sqrt 2 e^{i(\frac{3}{4}+2k)\pi}, therefore (-2+2i)^{\frac{1}{3}}=\sqrt2e^{i(\frac{1}{4}+\frac{2}{3}k)\pi}, which means the set of all values is \{1+i,-\frac{\sqrt3+1}{2}+\frac{\sqrt3-1}{2}i,\frac{\sqrt3-1}{2}-\frac{\sqrt3+1}{2}i\}.
3. Find all values of (−i)^i (hint: an expression in the form a^b should be considered as \exp(b\log a)). What is the value of (−i)^i if we use the principle branch of the \log function. By the principle branch of \log, we mean the domain of definition of \log is restricted to z = re^{iθ} such that r > 0, -\pi < \theta ≤ \pi.
- As (-i)^i=(e^{i(\frac{3}{2}+2k)\pi})^i=e^{-(\frac{3}{2}+2k)\pi}, we have the set of all values is \{e^{-(\frac{3}{2}+2k)\pi};k\in\Z\}.
When we consider the principle branch, it means k=-1. So (-i)^i=e^{-\frac{1}{2}\pi}.
Partial fraction of a rational function
4. Put the following rational functions into a partial fraction form \frac{1-z^2}{(z-\alpha)^3}, \frac{1-z^2}{(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)}, where \alpha_1, \alpha_2, \alpha_3 are simple poles.
- Suppose \frac{1-z^2}{(z-\alpha)^3}=\frac{A}{z-\alpha}+\frac{B}{(z-\alpha)^2}+\frac{C}{(z-\alpha)^3}. By solving 1-z^2=A(z-\alpha)^2+B(z-\alpha)+C, we can get A=-1,B=-2\alpha,C=1-\alpha^2. So \frac{1-z^2}{(z-\alpha)^3}=\frac{-1}{z-\alpha}+\frac{-2\alpha}{(z-\alpha)^2}+\frac{1-\alpha^2}{(z-\alpha)^3}.
Suppose \frac{1-z^2}{(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)}=\frac{A}{z-\alpha_1}+\frac{B}{z-\alpha_2}+\frac{C}{z-\alpha_3}. By solving 1-z^2=A(z-\alpha_2)(z-\alpha_3)+B(z-\alpha_1)(z-\alpha_3)+C(z-\alpha_1)(z-\alpha_2), we can get A=\frac{1-\alpha_1^2}{(\alpha_1-\alpha_2)(\alpha_1-\alpha_3)},B=\frac{1-\alpha_2^2}{(\alpha_1-\alpha_2)(\alpha_2-\alpha_3)},C=\frac{1-\alpha_3^2}{(\alpha_1-\alpha_3)(\alpha_2-\alpha_3)}. So \frac{1-z^2}{(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)}=\frac{\frac{1-\alpha_1^2}{(\alpha_1-\alpha_2)(\alpha_1-\alpha_3)}}{z-\alpha_1}+\frac{\frac{1-\alpha_2^2}{(\alpha_1-\alpha_2)(\alpha_2-\alpha_3)}}{z-\alpha_2}+\frac{\frac{1-\alpha_3^2}{(\alpha_1-\alpha_3)(\alpha_2-\alpha_3)}}{z-\alpha_3}.
Möbius transformations
Recall that a Möbius transformation is defined as M:z\mapsto\frac{az+b}{cz+d}, where a, b, c, d are complex numbers such that ad - bc\neq 0. Here, we consider the Möbius transformation as a map from the extended complex plane \overline{\mathbb C} = \mathbb C\cup\{\infty\} to itself. For \overline{\mathbb C}, we have two coordinate systems: let \overline{\mathbb C} = \mathcal A \cup \mathcal B, where \mathcal A := \mathbb C and \mathcal B := \mathbb C\cup\{\infty\}−\{0\}. From \mathcal A and \mathcal B, one has the maps f: \mathcal A\ni z\mapsto z\in\mathbb C, g:\mathcal B\ni z\mapsto\frac{1}{z}\in\mathbb C.
5. Give the domain of definition and the range of the maps g\circ f^{-1} and f\circ g^{-1}. Are these maps bijective holomorphic functions?
- Notice that f:\mathcal A\leftrightarrow \mathbb C,g:\mathcal B\leftrightarrow\mathbb C. Therefore \mathcal D(g)\cap\mathcal R(f^{-1})=\mathcal B\cap\mathcal A=\mathbb C-\{0\}, \mathcal D(f)\cap\mathcal R(g^{-1})=\mathcal A\cap\mathcal B=\mathbb C-\{0\}. So \mathcal D(g\circ f^{-1})=f^{-1}(\mathbb C-\{0\})=\mathbb C-\{0\},\mathcal D(f\circ g^{-1})=g^{-1}(\mathbb C-\{0\})=\mathbb C-\{0\}, and \mathcal R(g\circ f^{-1})=g(\mathbb C-\{0\})=\mathbb C-\{0\},\mathcal R(f\circ g^{-1})=f(\mathbb C-\{0\})=\mathbb C-\{0\}.
Because f,g are all bijective, g\circ f^{-1},f\circ g^{-1} are all bijective. As g\circ f^{-1}:z\mapsto\frac{1}{z},f\circ g^{-1}:z\mapsto\frac{1}{z}, and h(z)=\frac{1}{z} is holomorphic on \mathbb C-\{0\}, we know they both are holomorphic. So in conclusion, they are bijective holomorphic functions.
6. Prove that Möbius transformation is a conformal mapping.
- Let z=x+iy, then \frac{\partial M}{\partial\overline z}=\frac{1}{2}(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y})M=\frac{1}{2}(\frac{(az+b)_x(cz+d)-(az+b)(cz+d)_x}{(cz+d)^2}+i\frac{(az+b)_y(cz+d)-(az+b)(cz+d)_y}{(cz+d)^2})=\frac{1}{2}(\frac{a(cz+d)-(az+b)c}{(cz+d)^2}+i\frac{ai(cz+d)-(az+b)ci}{(cz+d)^2})=0,\frac{\partial M}{\partial z}=\frac{ad-bc}{(cz+d)^2}. So M(z) is holomorphic and nonzero on \mathbb C\cup\{\infty\}-\{\frac{d}{c}\}. As holomorphic functions are conformal, we have proved our statement.
7. Construct a special Möbius transformation that maps three distinct points \{\infty,1,−1\} to \{1,−i,i\} respectively. Such map is called Cayley transformation.
- By solving M(\infty)=\frac{a}{c}=1,M(1)=\frac{a+b}{c+d}=-i,M(-1)=\frac{-a+b}{-c+d}=i and letting a=1, we have a=1,b=-i,c=1,d=i, which means M(z)=\frac{z-i}{z+i}.
8. Prove that the Cayley transformation maps the real axis to the unit circle (that is circle of radius 1 centered at 0).
- M_{Cayley}(x)=\frac{x-i}{x+i}=\frac{x^2-2ix-1}{x^2+1}=\frac{x^2-1}{x^2+1}-\frac{2x}{x^2+1}i,x\in\R. Notice that (\frac{x^2-1}{x^2+1})^2+(\frac{-2x}{x^2+1})^2=1. So the Cayley transformation maps the real axis to the unit circle.
9. Using the the Cayley transformation, prove that in general that a Möbius transformation will map a line to a circle in the extended complex plane, and construct such a particular map that maps a line (a line can be expressed as z = ax+b,a,b\in\mathbb C by a real parameter x \in \R) to the unit circle. (hint: you should make compositions of Möbius transformations. Möbius transformation maps circles to circles, in this sense, a straight line is a circle in the extended complex plane).
- Let R_\theta(z)=e^{i\theta}z stands for rotation, S_r(z)=rz stands for scale, T_b(z)=z+b stands for translation and C(z)=\frac{z-i}{z+i} stands for Cayley transformation. Notice that R_\theta,S_r,P_b all map circles to circles, lines to lines. As M(x)=|\frac{a}{2c}-\frac{b}{2d}|\exp(i\operatorname{Arg(\frac{a}{2c}-\frac{b}{2d})})\frac{|\frac{ci}{d}|\exp(i\operatorname{Arg}\frac{ci}{d})z-i}{|\frac{ci}{d}|\exp(i\operatorname{Arg}\frac{ci}{d})z+i}+\frac{a}{2c}+\frac{b}{2d}=T_{\frac{a}{2c}+\frac{b}{2d}}\circ S_{|\frac{a}{2c}-\frac{b}{2d}|}\circ R_{\operatorname{Arg}(\frac{a}{2c}-\frac{b}{2d})}\circ C\circ S_{|\frac{ci}{d}|}\circ R_{\operatorname{Arg}\frac{ci}{d}}(z), we can know that M will map a line to a circle.
For z=ax+b, C\circ R_{-\operatorname{Arg}a}\circ S_{\frac{1}{|a|}}\circ T_{-b}(z)=\frac{z-b-ai}{z-b+ai} will maps it to the unit circle.
Cross-ratio
A cross-ratio of an ordered four points z_1, z_2, z_3, z_4 can be defined as [z_1, z_2, z_3, z_4] := \frac{(z_1 − z_3)(z_2 − z_4)}{(z_1 −z_2)(z_3 − z_4)}. It is a map from \overline{\mathbb{C}}\times\overline{\mathbb{C}}\times\overline{\mathbb{C}}\times\overline{\mathbb{C}} to \overline{\mathbb{C}}.
10. Prove [z_1, z_2, z_3, z_4] = [M(z_1),M(z_2),M(z_3),M(z_4)], where M is a Möbius transformation. You can check it by direct computations. Another way is to think the cross-ratio as a special Möbius transformation of one of the points say z_1, and use the property that a unique Möbius transformation carries three distinct points (in our case z_2, z_3, z_4) to 1, 0, \infty. Refer to [Ahlfors, page 78] for details.
- [M(z_1),M(z_2),M(z_3),M(z_4)]=(\frac{a}{c}+\frac{bc-ad}{c^2z_1+cd}-\frac{a}{c}-\frac{bc-ad}{c^2z_3+cd})(\frac{a}{c}+\frac{bc-ad}{c^2z_2+cd}-\frac{a}{c}-\frac{bc-ad}{c^2z_4+cd})/[(\frac{a}{c}+\frac{bc-ad}{c^2z_1+cd}-\frac{a}{c}-\frac{bc-ad}{c^2z_2+cd})(\frac{a}{c}+\frac{bc-ad}{c^2z_3+cd}-\frac{a}{c}-\frac{bc-ad}{c^2z_4+cd})]=\frac{z_3-z_1}{(cz_1+d)(cz_3+d)}\frac{z_4-z_2}{(cz_2+d)(cz_4+d)}/(\frac{z_2-z_1}{(cz_1+d)(cz_2+d)}\frac{z_4-z_3}{(cz_3+d)(cz_4+d)})=\frac{(z_3-z_1)(z_4-z_2)}{(z_2-z_1)(z_4-z_3)}=[z_1,z_2,z_3,z_4].
(Another way: Let L(z)=[z,z_2,z_3,z_4],S(z)=[z,M(z_2),M(z_3),M(z_4)]. Notice that L(z_2)=1,L(z_3)=0,L(z_4)=\infty,S(z_2)=1,S(z_3)=0,S(z_4)=\infty. According to the property that a unique Möbius transformation carries three distinct points to 1, 0, \infty, M=S^{-1}\circ L. Therefore S(M(z_1))=L(z_1).)
11. Prove the following statement: the cross-ratio [z_1,z_2,z_3,z_4] is real if and only if the four points z_1, z_2, z_3, z_4 lie on a circle or on a straight line. Try to give a proof by yourself. But you can refer to [Ahlfors, page 78] for details.
- Let L(z)=[z,z_2,z_3,z_4], we have L(z_2)=1,L(z_3)=0,L(z_4)=\infty.
P\Rightarrow Q: If L(z_1)\in\R, it means that L^{-1} maps the real axis into a circle or line that determined by z_2, z_3, z_4. Therefore z_1=L^{-1}(L(z_1)) must on the circle or line too, which means z_1, z_2, z_3, z_4 lie on the same circle or straight line.
Q\Rightarrow P: If the four points z_1, z_2, z_3, z_4 lie on a circle or on a straight line, it means that L maps the circle or line that z_2, z_3, z_4 on into the real axis. Therefore L(z_1)=[z_1,z_2,z_3,z_4]\in\R.
Q.E.D.
Comments NOTHING