Problem 1
Write the dual problems for the following linear programming probloms.
1.
minimize z = 2 x 1 + 2 x 2 + 4 x 3 \text{minimize~}z=2x_{1}+2x_{2}+4x_{3} minimize z = 2 x 1 + 2 x 2 + 4 x 3
subject to
{ x 1 + 3 x 2 + 4 x 3 ≥ 2 x 1 + x 2 + 3 x 3 ≤ 3 x 1 + 4 x 2 + 3 x 3 = 5 x 1 , x 2 ≥ 0 , x 3 unrestricted \begin{cases}
x_{1}+3x_{2}+4x_{3}\geq2\\
x_{1}+x_{2}+3x_{3}\leq3\\
x_{1}+4x_{2}+3x_{3}=5\\
x_{1},x_{2}\geq0,x_{3} \text{ unrestricted}
\end{cases} ⎩ ⎨ ⎧ x 1 + 3 x 2 + 4 x 3 ≥ 2 x 1 + x 2 + 3 x 3 ≤ 3 x 1 + 4 x 2 + 3 x 3 = 5 x 1 , x 2 ≥ 0 , x 3 unrestricted
The dual of this problem is
max 2 y 1 + 3 y 2 + 5 y 3 \max 2y_1+3y_2+5y_3 max 2 y 1 + 3 y 2 + 5 y 3
subject to
{ y 1 + y 2 + y 3 ≤ 2 3 y 1 + y 2 + 4 y 3 ≤ 2 4 y 1 + 3 y 2 + 3 y 3 = 4 y 1 ≥ 0 , y 2 ≤ 0 , y 3 unrestricted \begin{cases}
y_{1}+y_{2}+y_{3}\leq2\\
3y_{1}+y_{2}+4y_{3}\leq 2\\
4y_{1}+3y_{2}+3y_{3}=4\\
y_{1}\geq0,y_2\leq 0, y_{3} \text{ unrestricted}
\end{cases} ⎩ ⎨ ⎧ y 1 + y 2 + y 3 ≤ 2 3 y 1 + y 2 + 4 y 3 ≤ 2 4 y 1 + 3 y 2 + 3 y 3 = 4 y 1 ≥ 0 , y 2 ≤ 0 , y 3 unrestricted
2.
maximize z = 5 x 1 + 6 x 2 + 3 x 3 \text{maximize~}z=5x_{1}+6x_{2}+3x_{3} maximize z = 5 x 1 + 6 x 2 + 3 x 3
subject to
{ x 1 + 2 x 2 + 2 x 3 = 5 − x 1 + 5 x 2 − x 3 ≥ 3 4 x 1 + 7 x 2 + 3 x 3 ≤ 8 x 1 is unrestricted, x 2 ≥ 0 , x 3 ≤ 0 \begin{cases}
x_{1}+2x_2+2x_{3}=5\\
-x_{1}+5x_{2}-x_{3}\ge 3\\
4x_1+7x_2+3x_3\leq 8\\
x_{1}\text{ is unrestricted, }x_{2}\geq0,x_{3}\leq0
\end{cases} ⎩ ⎨ ⎧ x 1 + 2 x 2 + 2 x 3 = 5 − x 1 + 5 x 2 − x 3 ≥ 3 4 x 1 + 7 x 2 + 3 x 3 ≤ 8 x 1 is unrestricted, x 2 ≥ 0 , x 3 ≤ 0
The dual of this problem is
min z = 5 y 1 + 3 y 2 + 8 y 3 \min z=5y_{1}+3y_{2}+8y_{3} min z = 5 y 1 + 3 y 2 + 8 y 3
subject to
{ y 1 − y 2 + 4 y 3 = 5 2 y 1 + 5 y 2 + 7 y 3 ≥ 6 2 y 1 − y 2 + 3 y 3 ≤ 3 y 1 is unrestricted, y 2 ≤ 0 , y 3 ≥ 0 \begin{cases}
y_{1}-y_2+4y_{3}=5\\
2y_{1}+5y_{2}+7y_{3}\ge 6\\
2y_1-y_2+3y_3\leq 3\\
y_{1}\text{ is unrestricted, }y_{2}\leq0,y_{3}\geq0
\end{cases} ⎩ ⎨ ⎧ y 1 − y 2 + 4 y 3 = 5 2 y 1 + 5 y 2 + 7 y 3 ≥ 6 2 y 1 − y 2 + 3 y 3 ≤ 3 y 1 is unrestricted, y 2 ≤ 0 , y 3 ≥ 0
maximize z = ∑ j = 1 n c j x j \text{maximize }z=\sum_{j=1}^{n}c_{j}x_{j} maximize z = j = 1 ∑ n c j x j
subject to
{ ∑ j = 1 n a i j x j ≤ b i ( i = 1 , … , m 1 < m ) ∑ j = 1 n a i j x j = b i ( i = m 1 + 1 , m 1 + 2 , … , m ) x j ≥ 0 ( j = 1 , … , n 1 < n ) x j is unrestricted ( j = n 1 + 1 , … , n ) \begin{cases}
\sum_{j=1}^{n}a_{ij}x_{j}\leq b_{i} & (i=1,\ldots,m_{1}<m)\\
\sum_{j=1}^{n}a_{ij}x_{j}= b_{i} & (i=m_1+1,m_1+2,\dots,m)\\
x_j\ge 0 & (j=1,\dots,n_1<n)\\
x_j \text{ is unrestricted} & (j=n_1+1,\dots,n)
\end{cases} ⎩ ⎨ ⎧ ∑ j = 1 n a ij x j ≤ b i ∑ j = 1 n a ij x j = b i x j ≥ 0 x j is unrestricted ( i = 1 , … , m 1 < m ) ( i = m 1 + 1 , m 1 + 2 , … , m ) ( j = 1 , … , n 1 < n ) ( j = n 1 + 1 , … , n )
The dual of this problem is
min ∑ i = 1 m b i y i \min \sum_{i=1}^{m}b_{i}y_{i} min i = 1 ∑ m b i y i
subject to
{ ∑ i = 1 m a i j y i ≥ c j ( j = 1 , … , n 1 < n ) ∑ i = 1 m a i j y i = c j ( j = n 1 + 1 , … , n ) y i ≥ 0 ( i = 1 , … , m 1 < m ) y i is unrestricted ( i = m 1 + 1 , … , m ) \begin{cases}
\sum_{i=1}^{m}a_{ij}y_{i}\geq c_{j} & (j=1,\ldots,n_{1}<n)\\
\sum_{i=1}^{m}a_{ij}y_{i}= c_{j} & (j=n_1+1,\dots,n)\\
y_i\geq 0 & (i=1,\dots,m_1<m)\\
y_i \text{ is unrestricted} & (i=m_1+1,\dots,m)
\end{cases} ⎩ ⎨ ⎧ ∑ i = 1 m a ij y i ≥ c j ∑ i = 1 m a ij y i = c j y i ≥ 0 y i is unrestricted ( j = 1 , … , n 1 < n ) ( j = n 1 + 1 , … , n ) ( i = 1 , … , m 1 < m ) ( i = m 1 + 1 , … , m )
Problem 2
Prove that the dual of the dual problem of a linear programming problem is the original problem.
Consider the original problem as:
max c T x A x ≤ b x ≥ 0 \max c^Tx\\
Ax\leq b\\
x\geq0 max c T x A x ≤ b x ≥ 0
And it's dual problem can be written as:
min b T y A T y ≥ c y ≥ 0 \min b^Ty\\
A^Ty\geq c\\
y\geq0 min b T y A T y ≥ c y ≥ 0
And the dual of the dual problem is:
max c T z ( A T ) T z = A z ≤ b z ≥ 0 \max c^Tz\\
(A^T)^Tz=Az\leq b\\
z\geq0 max c T z ( A T ) T z = A z ≤ b z ≥ 0
So the dual of the dual problem is the original problem.
Problem 3
Given the linear programming problem:
maximize z = x 1 + x 2 \text{maximize~}z=x_1+x_2 maximize z = x 1 + x 2
subject to:
{ − x 1 + x 2 + x 3 ≤ 2 − 2 x 1 + x 2 − x 3 ≤ 1 x 1 , x 2 , x 3 ≥ 0 \begin{cases}
-x_1+x_2+x_3\leq2\\
-2x_1+x_2-x_3\leq1\\
x_1,x_2,x_3\geq0
\end{cases} ⎩ ⎨ ⎧ − x 1 + x 2 + x 3 ≤ 2 − 2 x 1 + x 2 − x 3 ≤ 1 x 1 , x 2 , x 3 ≥ 0
Prove, using the properties of duality, that the objective function of the above linear programming problem is unbounded.
Conisder it's fual problem:
min 2 y 1 + y 2 s . t . { − y 1 − 2 y 2 ≥ 1 y 1 + y 2 ≥ 1 y 1 − y 2 ≥ 0 y 1 , y 2 ≥ 0 \min 2y_1+y_2\\
\mathrm{s.t.}
\begin{cases}
-y_1-2y_2\geq1\\
y_1+y_2\geq1\\
y_1-y_2\geq0\\
y_1,y_2\geq0
\end{cases} min 2 y 1 + y 2 s.t. ⎩ ⎨ ⎧ − y 1 − 2 y 2 ≥ 1 y 1 + y 2 ≥ 1 y 1 − y 2 ≥ 0 y 1 , y 2 ≥ 0
Notice that, − y 1 − 2 y 2 ≥ 1 , y 1 , y 2 ≥ 0 -y_1-2y_2\ge1,y_1,y_2\ge0 − y 1 − 2 y 2 ≥ 1 , y 1 , y 2 ≥ 0 , which is a contradiction. So, the fesible region is empty. And as the feasible region of the original problem is not empty, the original problem must be unbounded.
Problem 4
Given the original problem and dual problem:
Original Problem:
max f ( X ) = C X \max f(X)=CX max f ( X ) = CX
subject to
A X ≤ B X ≥ 0 AX\leq B\\
X\ge0 A X ≤ B X ≥ 0
Dual Problem:
min g ( Y ) = Y B \min g(Y)=YB min g ( Y ) = Y B
subject to
Y A ≥ C Y ≥ 0 YA\ge C\\
Y\ge 0 Y A ≥ C Y ≥ 0
Given the original problem and its dual problem as above, let X 0 X^0 X 0 and Y 0 Y^0 Y 0 be feasible solutions to the original problem and dual problem, respectively. Let U 0 U^0 U 0 be the slack variable of the original problem constraints, and V 0 V^0 V 0 be the slack variable of the dual problem constraints.
When V 0 X 0 + Y 0 U 0 = 0 V^0X^0+Y^0U^0 =0 V 0 X 0 + Y 0 U 0 = 0 , prove that X 0 X^0 X 0 and Y 0 Y^0 Y 0 are optimal solutions to the original problem and dual problem, respectively.
According to the slack variable, we can get U 0 = B − A X 0 , V 0 = Y 0 A − C U^0=B-AX^0,V^0=Y^0A-C U 0 = B − A X 0 , V 0 = Y 0 A − C . As X 0 , Y 0 X^0,Y^0 X 0 , Y 0 is feasible solutions, by the V 0 X 0 + Y 0 U 0 = 0 V^0X^0+Y^0U^0=0 V 0 X 0 + Y 0 U 0 = 0 , we have ( Y 0 A − C ) X 0 + Y 0 ( B − A X 0 ) = − C X 0 + Y 0 B = 0 (Y^0A-C)X^0+Y^0(B-AX^0)=-CX^0+Y^0B=0 ( Y 0 A − C ) X 0 + Y 0 ( B − A X 0 ) = − C X 0 + Y 0 B = 0 , which means C X 0 = Y 0 B CX^0=Y^0B C X 0 = Y 0 B . By the weak duality lemma, C X 0 ≤ Y 0 B CX^0\leq Y^0B C X 0 ≤ Y 0 B , now we have C X 0 = Y 0 B CX^0=Y^0B C X 0 = Y 0 B , which means X 0 X^0 X 0 and Y 0 Y^0 Y 0 are optimal solutions.
Problem 5
max z = 6 x 1 + 10 x 2 + 9 x 3 + 20 x 4 \max z= 6x_1+10x_2+9x_3+20x_4 max z = 6 x 1 + 10 x 2 + 9 x 3 + 20 x 4
subject to
{ 4 x 1 + 9 x 2 + 7 x 3 + 10 x 4 ≤ 600 x 1 + x 2 + 3 x 3 + 40 x 4 ≤ 400 3 x 1 + 4 x 2 + 2 x 3 + x 4 ≤ 500 x j ≥ 0 ( j = 1 , 2 , 3 , 4 ) \begin{cases}
4x_1+9x_2+7x_3+10x_4\leq600\\
x_1+x_2+3x_3+40x_4\leq400\\
3x_1+4x_2+2x_3+x_4\leq500\\
x_j\geq0\quad(j=1,2,3,4)
\end{cases} ⎩ ⎨ ⎧ 4 x 1 + 9 x 2 + 7 x 3 + 10 x 4 ≤ 600 x 1 + x 2 + 3 x 3 + 40 x 4 ≤ 400 3 x 1 + 4 x 2 + 2 x 3 + x 4 ≤ 500 x j ≥ 0 ( j = 1 , 2 , 3 , 4 )
The optimal solution of this problem is:
x = ( 400 3 , 0 , 0 , 20 3 ) , z ∗ = 2800 3 x=\left(\frac{400}{3},0,0,\frac{20}{3}\right),\quad z^*=\frac{2800}{3} x = ( 3 400 , 0 , 0 , 3 20 ) , z ∗ = 3 2800
Find the optimal solution of the dual problem using the complementary slackness conditions.
min 600 y 1 + 400 y 2 + 500 y 3 s.t. { 4 y 1 + y 2 + 3 y 3 ≥ 6 9 y 1 + y 2 + 4 y 3 ≥ 10 7 y 1 + 3 y 2 + 2 y 3 ≥ 9 10 y 1 + 40 y 2 + y 3 ≥ 20 y i ≥ 0 ( i = 1 , 2 , 3 ) \min 600y_1+400y_2+500y_3\\
\text{s.t.}
\begin{cases}
4y_1+y_2+3y_3\geq6\\
9y_1+y_2+4y_3\geq10\\
7y_1+3y_2+2y_3\geq9\\
10y_1+40y_2+y_3\geq20\\
y_i\geq0\quad(i=1,2,3)
\end{cases} min 600 y 1 + 400 y 2 + 500 y 3 s.t. ⎩ ⎨ ⎧ 4 y 1 + y 2 + 3 y 3 ≥ 6 9 y 1 + y 2 + 4 y 3 ≥ 10 7 y 1 + 3 y 2 + 2 y 3 ≥ 9 10 y 1 + 40 y 2 + y 3 ≥ 20 y i ≥ 0 ( i = 1 , 2 , 3 )
Since the optimal solution is x = ( 400 3 , 0 , 0 , 20 3 ) x=\left(\frac{400}{3},0,0,\frac{20}{3}\right) x = ( 3 400 , 0 , 0 , 3 20 ) , we have:
{ 4 y 1 + y 2 + 3 y 3 = 6 10 y 1 + 40 y 2 + y 3 = 20 \begin{cases}
4y_1+y_2+3y_3=6\\
10y_1+40y_2+y_3=20
\end{cases} { 4 y 1 + y 2 + 3 y 3 = 6 10 y 1 + 40 y 2 + y 3 = 20
Solving this linear equations gives y 1 = 22 15 − 119 150 y 3 , y 2 = 2 15 + 13 75 y 3 y_1=\frac{22}{15}-\frac{119}{150}y_3,y_2=\frac{2}{15}+\frac{13}{75}y_3 y 1 = 15 22 − 150 119 y 3 , y 2 = 15 2 + 75 13 y 3 .
So, the objective function can be written as min 2800 3 + 280 3 y 3 \min \frac{2800}{3}+\frac{280}{3}y_3 min 3 2800 + 3 280 y 3 , which means y 3 y_3 y 3 should be 0 0 0 .
Therefore, the optimal solution is ( 22 15 , 2 15 , 0 ) (\frac{22}{15},\frac{2}{15},0) ( 15 22 , 15 2 , 0 ) .
Comments NOTHING